JOM 23024

Übergangsmetall-substituierte Diphosphene

XXX *. η^{1} - und η^{2} -Komplexe der Metallodiphosphene (η^{5} -L)(CO)₂Fe-P=P-Mes^{*} (L = C₅Me₅, C₅Me₄Et, C₅Me₄ⁿBu, 1,3-^tBu₂C₅H₃; Mes^{*} = 2,4,6-^tBu₃C₆H₂). Röntgenstrukturanalyse von Pt{ η^{2} -[(η^{5} -C₅Me₄Et)(CO)₂Fe-P=P-Mes^{*}]}(PPh₃)₂

Lothar Weber, Iris Schumann, Hans-Georg Stammler und Beate Neumann

Fakultät für Chemie der Universität Bielefeld, Universitätsstrasse 25, W-4800 Bielefeld 1 (Deutschland) (Eingegangen den 26, Mai 1992)

Abstract

The metallodiphosphenes (η^5 -L)(CO)₂Fe-P=P-Mes* (L = C₅Me₅, C₅Me₄Et, C₅Me₄ⁿBu, 1,3-^tBu₂C₅H₃; Mes* = 2,4,6-^tBu₃C₆H₂) are reacted with (Z-cyclooctene)Cr(CO)₅ to afford (η^5 -L)(CO)₂Fe-P[Cr(CO)₅]=P-Mes* with η^1 -coordination. In contrast, the treatment of the metallodiphosphenes with (Ph₃P)₂Pt(C₂H₄) gives the η^2 -coordinated compounds Pt { η^2 -[(η^5 -L)(CO)₂Fe-P=P-Mes*]}(Ph₃P)₂. The molecular structure of Pt{ η^2 -[(η^5 -C₅Me₄Et)(CO)₂Fe-P=P-Mes*]}(Ph₃P)₂ is determined by an X-ray diffraction study.

Zusammenfassung

Die Metallodiphosphene $(\eta^5-L)(CO)_2Fe-P=P-Mes^* (L = C_5Me_5, C_5Me_4Et, C_5Me_4^nBu, 1,3-^tBu_2C_5H_3; Mes^* = 2,4,6-^tBu_3C_6H_2)$ reagieren mit (Z-Cyclooctene)Cr(CO)₅ zu den Komplexen $(\eta^5-L)(CO)_2Fe-P[Cr(CO)_5]=P-Mes^*$ mit η^1 -Diphosphenliganden. Im Gegensatz hierzu werden bei der Umsetzung der Metallodiphosphene mit $(Ph_3P)_2Pt(C_2H_4)$ η^2 -Komplexe des Typs Pt $\{\eta^2-[(\eta^5-L)(CO)_2Fe-P=P-Mes^*]\}(Ph_3P)_2$ erhalten. Die Molekülstruktur von Pt $\{\eta^2-[(\eta^5-C_5Me_4Et)(CO)_2Fe-P=P-Mes^*]\}(Ph_3P)_2$ wird durch die Röntgenstrukturanalyse bestimmt.

1. Einleitung

Diphosphene sind vielseitige Liganden und werden in ihren Komplexen in mindestens sieben verschiedenen Koordinationsmoden angetroffen $(A-G)^2$ [2,3].

Correspondence to: Prof. Dr. L. Weber.

^{*} XXIX. Mitteilung, siehe Lit. 1.

Wir haben uns in den letzten Jahren für Synthese, Struktur und chemische Reaktivität von Übergangsmetall-substituierten Diphosphenen (Metallodiphosphene, Diphosphenylkomplexe) vom Typ H interessiert [3]. Aufgrund mehrerer Donorzentren sind solche Spezies interessante Liganden. In Analogie zum Komplextyp A mit η^1 -Liganden werden M(CO)_n-Fragmente (M = Ni, n = 3; Fe, n = 4; Cr, n = 5) von den Diphosphenylkomplexen $(\eta^5 - C_5 R'_5)(CO)(L)M - P = P -$ Aryl (R = Me, L = CO, M = Fe, Ru, Os; Aryl = 2,4,6- $^{t}Bu_{3}C_{6}H_{2}(=Mes^{*})$ [4-6]; R' = Me, L = NO, M = Mn, Re, $Aryl = Mes^{*}$ [7]; R' = Me, L = CO, M = Fe, Aryl $= 2,4,6(CF_3)_3C_6H_2; 2,6(CF_3)_2C_6H_3; R' = H, L =$ PPh_3 , M = Fe, Aryl = Mes^{*}; 2,4,6(CF_3)_3C_6H_2, 2,6(CF₃)₂C₆H₃ [8] über das metallierte Phosphorzentrum η^1 -gebunden. Mit Komplex I existiert ein Tetrahedrancluster (Typ G) des in freiem Zustand nicht existenzfähigen Metallodiphosphen $(\eta^5 - C_5 Me_5)(CO)_2$ - $Fe-P=P-^{t}Bu$ [9].

Bedingt durch die große Raumerfüllung des Organosubstituenten C(SiMe₃)₃ in $(\eta^5 \cdot C_5 Me_5)(CO)_2$ -Fe-P=P-C(SiMe₃)₃ bildet dieses Metallodiphosphen mit Carbonylchrom-Fragmenten keine η^1 -Komplexe vom Typ A, sondern die Verbindung II mit dem neuartigen η^3 -1-Ferra-2,3-diphosphaallyl-Liganden [10]. Eine solche Koordinationsweise war von Diphosphenen bislang unbekannt. Nach dem Wade-Mingos-Regeln kann II auch als "Butterfly-Molekül" (*arachno*-Cluster) mit 42 VE verstanden werden.

Ziel dieser Arbeit war es nun, das Koordinationsverhalten von Metallodiphosphenen in Abhängigkeit von der Raumerfüllung des Ringliganden am Eisen gegenüber (Z-Cycloocten)Cr(CO)₅ und (Ph₃P)₂Pt(C₂-H₄) zu studieren.

2. Ergebnisse

2.1. Diphosphenyleisen-Komplexe als η^1 -Liganden

Zur Synthese der $(CO)_5$ Cr-Komplexe V werden die Diphosphenylkomplexe IV zunächst aus den entsprechenden Disilylphosphidoeisen-Komplexen III und 2,4,6-^tBu₃C₆H₂PCl₂ (= Mes*PCl₂) [11] erzeugt und anschließend *in situ* mit äquimolaren Mengen von (Z-Cycloocten)Cr(CO)₅ [12] umgesetzt.

$$[Fe] - P(SiMe_3)_2 \xrightarrow{+ Mes^*PCl}_{-2Me_3SiC}$$

(IIIb-d)

$$[Fe] P = P \xrightarrow{Hes^{\star}} \xrightarrow{+LCr(CO)_5} P$$

Die Verbindungen Vb-d werden als dunkelrote, diamagnetische Feststoffe erhalten, die sich gut in THF, Diethylether und Benzol lösen. Vc ist im Gegensatz zu Vb und Vd auch in *n*-Pentan mäßig löslich. In Substanz sind die $Cr(CO)_5$ -Komplexe an der Luft für kurze Zeit stabil.

Als Vergleichssubstanz für die Diskussion der spektroskopischen Daten wird der schon bekannte Komplex $(\eta^5 \cdot C_5 Me_5)(CO)_2 FeP[Cr(CO)_5]=P-Mes^*$ (Va) [7] herangezogen. In den ³¹P{¹H} MMR Spektren von Va-d finden sich zwei Dubletts in dem für unsymmetrische Diphosphene und ihre η^1 -Komplexe charakteristischen Tieffeldbereich (δ 597.5 bis 565.7) mit sehr großen Kopplungskonstanten ¹J(PP) (589-595 Hz) (Tabelle 1). Die Resonanzen für die metallierten Phosphoratome

TABELLE 1. ³¹P{¹H} NMR-Daten von IVa-d und Va-d in THF ^a

PFe	P-Mes*	¹ J(PP)	Lit.
717.8	551.3	595	3,6
719.7	553.4	596	25
719.6	553.7	597	25
678.1	559.1	598	25
595.9	570.9	595	7
597.6	573.1	595	Diese Arbeit
597.5	572.9	594	Diese Arbeit
574.8	565.7	589	Diese Arbeit
	PFe 717.8 719.7 719.6 678.1 595.9 597.6 597.5 574.8	PFe P-Mes* 717.8 551.3 719.7 553.4 719.6 553.7 678.1 559.1 595.9 570.9 597.6 573.1 597.5 572.9 574.8 565.7	PFe P-Mes* ¹ J(PP) 717.8 551.3 595 719.7 553.4 596 719.6 553.7 597 678.1 559.1 598 595.9 570.9 595 597.6 573.1 595 597.5 572.9 594 574.8 565.7 589

^a δ in ppm, J in Hz.

erfahren bei der Komplexierung Hochfeldverschiebungen von $\delta({}^{31}P) = -103.3$ bis -122.7 ppm, während die arylierten Phosphorkerne geringfügig entschirmt werden ($\delta({}^{31}P) = +6.6$ bis +19.6 ppm). Die Kopplungskonstanten ${}^{1}J(PP)$ werden durch die Adduktbildung kaum beeinflußt. Diese Befunde legen nahe, daß ähnlich wie in Va auch in Vb-d die Cr(CO)₅ Gruppe an das metallierte Phosphoratom der Diphosphenylkomplexe IVb-d gebunden ist.

In den ¹³C{¹H} NMR Spektren von **Vb-d** absorbieren die am Eisen gebundenen Carbonylliganden bei 214.4 bis 214.9 ppm und sind damit im Vergleich mit **IVb-d** geringfügig zu höherem Feld verschoben $(\delta = -1.6 \text{ bis } -2.3 \text{ ppm})$. Dieser Effekt wird dadurch verständlich, daß der Cr(CO)₅-Rest Elektronendichte vom Diphosphenylgerüst abzieht und damit die Rückbindung vom Fe-Atom zu den CO-Liganden schwächt.

Die Verbindungen Vb-d zeigen in den IR-Spektren (Pentan-Lösung) jeweils mehr ν (CO) Banden als für eine ungestörte C_{4v} -Symmetrie des Cr(CO)₅-Fragments zu erwarten wäre. Der starke Elektronenzug der Cr(CO)₅-Einheit wird durch den Spektrenvergleich mit den freien Diphosphenylkomplexen IVb-d deutlich. Die beiden Banden der CO-Valenzschwingungen des $Fe(CO)_2$ -Bausteins werden um 11–17 cm⁻¹ kurzwellig verschoben. In Vb-d ist das σ -Donor/ π -Akzeptorverhalten der Diphosphenylkomplexe IVb-d gegenüber Cr(CO)₅ etwas stärker ausgeprägt als das der Diphosphene $(Me_3Si)_2CH-P=P-CH(SiMe_3)_2$ in $(Me_3 Si_2CH-P[Cr(CO)_5]=P-CH(SiMe_3)_2$ [$\nu(CO)$ cm⁻¹ CH₂Cl₂-Lösung: 2062m, 1958vs, 1953Sch, 1943s] [13] und Mes-P=P-Mes^{*} in Mes^{*}-P=P[Cr(CO),]Mes $[\nu(CO) \text{ cm}^{-1}, \text{ KBr}): 2060s, 1990, 1950vs, 1940s]$ [14].

2.2. Diphosphenyleisen-Komplexe als η^2 -Liganden

Die Darstellung der η^2 -Diphosphenylkomplexe VIIa-d gelingt durch die Reaktion von IVa-d mit der äquimolaren Menge von (Ph₃P)₂Pt(C₂H₄) [15] in THF bei Raumtemperatur (Gl. (2)).

$$[Fe] P = P \xrightarrow{H(Ph_3P)_2Pt(C_2H_4)} (IVa-d)$$

$$[Fe] P = P \xrightarrow{H(Ph_3P)_2Pt(C_2H_4)} (P = P \xrightarrow{Pt} P \xrightarrow{Ht} P = P \xrightarrow{Ht}$$

Die Verbindungen VIIa-c werden aus Ether als mikrokristalline, schwarz-violette, diamagnetische Fest-

TABELLE 2. ³¹P{¹H}- und ¹⁹⁵Pt{¹H}-NMR-Daten von VIIa-d in $C_6D_6^{a}$

		Irej				
Ph ₃ P ³	-	P ¹				
ח. הל	Pt ←	-				
rn ₃ r	Mes*	, F-				
Verb.	P-Atom	δ(³¹ P)	¹ <i>J</i> (PP)	¹ J(PtP)	² <i>J</i> (PP)	δ(¹⁹⁵ Pt)
VIIa	1	128.5	439	255	(1,3)2	- 2283
	2	71.5	439	176	(2,4)4	
	3	27.8		3290	(3,4)6	
	4	27.2		3119	(1,4)26	
					(2,3)29	
VIIb	1	125.7	440	250	(1,3)3	- 2280
	2	72.3	440	174	(2,4)4	
	3	27.9		3283	(3,4)6	
	4	27.2		3117	(1.4)26	
					(2,3)29	
VIIc	1	126.2	439	252	(1,3)3	- 2282
	2	72.0	439	174	(2.4)5	
	3	27.8		3284	(3.4)6	
	4	27.2		3112	(1.4)26	
				•	(2,3)29	
VIId	1	93.4	428	152	(3,4)5	
	2	63.7	428	222	(2,4)7	
	3	26.7		3254	(1,4)15	
	4	27.4		3106	(2.3)39	

^aδ in ppm, J in Hz.

stoffe gewonnen. VIId ist schwarz-grün. Die oxidationsund hydrolyseempfindlichen π -Komplexe lösen sich sehr gut in Benzol, Ether und THF während sie in n-Pentan nur mäßig löslich sind.

Die ${}^{31}P{}^{1}H$ NMR-Spektren von VIIa-d sind 1. Ordnung und liefern die Kopplungskonstanten aller Phosphorkerne untereinander. Unter der Annahme, daß die ¹J(PP)-Kopplung im unsymmetrischen Diphosphenylliganden deutlich größer (428–440 Hz) als die ${}^{2}J(PPtP)$ Kopplungen ist und daß bei letzteren trans ${}^{2}J(PP) > cis {}^{2}J(PP)$ ist [16] lassen sich alle ${}^{31}P$ -NMR-Signale eindeutig zuordnen (Tabelle 2). Die Phosphorkerne des Diphosphenylliganden erfahren durch die η^2 -Koordination kräftige Hochfeldverschiebungen wobei die der Fe-substituierten Phosphoratome mit $\delta = -584.7$ bis -594.0 ppm stärker ausfallen als jene der arylierten Phosphorkerne ($\delta =$ -479.8 bis -495.4 ppm). Dieser Befund spiegelt den intensiveren Kontakt des metallierten Phosphors mit dem Platin wieder. Bei der Komplexbildung wird die Kopplungskonstante von ${}^{1}J(PP)$ von 596 (+2 Hz) in IV um 156-170 Hz erniedrigt. Vergleichbar damit ist die Koordination vom Cp*P=PMes* an den (Ph₃P)₂Pt-Baustein, wobei die ¹J-Kopplungskonstante zwischen den Phosphoratomen des Diphosphenes von 584 auf 434 Hz sinkt [17]. In $(Et_3P)_2 Pt(\eta^2 - Bu - P = P - SiMe_3)$ dagegen wird ${}^{1}J(PP) = 351$ Hz gemessen [18]. Die aus den Satellitenbanden direkt erhältlichen Kopplungskonstanten liegen für die PPh₃-Liganden mit 3098 bis 3290 Hz im Erwartungsbereich von ${}^{1}J(PtP)$ -Kopplungen, der sich von 2000-4000 Hz erstreckt [16]. Hierbei ist ¹J(PtP(4)) um 148-172 Hz kleiner als ¹J(PtP(3)), was wir mit dem stärkeren *trans*-Effekt des Eisen-substituierten P-Atoms im Diphosphen erklären. Im Einklang damit ist ${}^{1}J(PtP(1))$ in VIIa-c signifikant größer als ${}^{1}J(PtP(2))$, was unter anderem auch durch einen kürzeren Bindungsabstand Pt-P(1) relativ zu Pt-P(2) belegt wird (siehe unten). Im Vergleich zu den Kopplungen zwischen dem Pt-Kern und den Phosphanliganden ist die Kopplung zum Diphosphen um eine Zehnerpotenz schwächer, was auf einen geringen s-Anteil in der PtP-Bindung zum Diphosphen hindeutet.

In den IR-Spektren von **VIIa-d** (Pentan-Lösung) werden die ν (CO)-Banden der Fe(CO)₂ Gruppe um 24-35 cm⁻¹ langwellig verschoben. Dies deutet darauf hin, daß zusätzliche Elektronendichte vom Pt(PPh₃)₂-Fragment auf den Diphosphenylliganden übertragen wird und dieser sich damit als kräftiger π -Akzeptor ausweist.

2.3. Röntgenstrukturanalyse von VIIb

Zur zweifelsfreien Charakterisierung der Bindungsverhältnisse in den hier vorgestellten η^2 -Diphosphen-Platinkomplexen wurde eine Röntgenstrukturanalyse von VIIb durchgeführt. Einkristalle dieser Verbindung wurden aus Pentan/Ether-Gemischen bei -30°C gezüchtet. Ein Kristall mit den ungefähren Dimensionen von $0.20 \times 0.25 \times 0.4$ mm wurde bei 193 K auf

TABELLE 3. Atomkoordinaten (×10⁴) und äquivalente Isotrope Auslenkungskoeffizienten ($\mathring{A}^2 \times 10^3$)

Atom	x	у	Z	U _{eq} ^a	Atom	x	у	z	U _{eq} ^a
Pt(1)	2092(1)	389(1)	3263(1)	26(1)	C(31)	3673(4)	756(5)	1782(5)	39(4)
Fe(1)	2974(1)	- 1676(1)	3671(1)	31(1)	C(32)	544(3)	674(3)	4721(5)	75(6)
P(1)	2847(1)	- 424(2)	4188(2)	29(1)	C(33)	284	1285	5064	77(6)
P(2)	3192(1)	320(1)	3380(2)	28(1)	C(34)	443	2048	4934	53(5)
P(3)	1258(1)	32(2)	3720(2)	37(1)	C(35)	860	2200	4461	48(5)
P(4)	1682(1)	1264(2)	2182(2)	34(1)	C(36)	1120	1589	4118	38(4)
O(1)	1673(3)	-2156(5)	3102(5)	64(4)	C(37)	961	827	4248	40(4)
O(2)	2919(4)	- 1215(4)	1952(4)	61(4)	C(38)	676(3)	- 828(4)	2323(5)	65(6)
C(1)	3150(3)	- 2660(4)	4472(5)	39(4)	C(39)	172	-1127	1685	107(8)
C(2)	3478	- 2022	4940	36(4)	C(40)	- 441	- 920	1653	123(9)
C(3)	3914	- 1751	4520	34(4)	C(41)	- 549	-414	2259	101(7)
C(4)	3855	- 2221	3791	35(4)	C(42)	- 45	- 115	2896	73(6)
C(5)	3383	- 2783	3762	32(4)	C(43)	568	- 323	2928	51(4)
C(6)	2694(5)	- 3160(6)	4760(7)	58(5)	C(44)	1151(3)	-1427(4)	4488(4)	52(5)
C(7)	3433(5)	- 1714(6)	5770(6)	51(5)	C(45)	1277	- 1932	5180	59(6)
C(8)	4400(5)	- 1144(5)	4840(6)	44(4)	C(46)	1667	- 1697	5968	62(6)
C(9)	4271(5)	- 2160(6)	3204(6)	53(5)	C(47)	1929	- 957	6064	60(5)
C(10)	3185(5)	- 3426(6)	3114(7)	56(5)	C(48)	1803	-452	5373	48(4)
C(11)	3574(5)	- 4152(6)	3381(8)	78(6)	C(49)	1414	- 687	4584	41(4)
C(12)	2176(5)	- 1931(5)	3333(7)	46(5)	C(50)	2035(3)	1491(3)	657(4)	55(5)
C(13)	2943(5)	-1360(6)	2642(7)	39(4)	C(51)	2169	1218	- 72	55(5)
C(14)	3703(4)	1179(5)	3818(5)	23(3)	C(52)	2166	423	-229	65(5)
C(15)	3731(4)	1684(5)	4529(5)	21(3)	C(53)	2029	- 98	344	64(5)
C(16)	4036(4)	2401(5)	4559(6)	32(4)	C(54)	1895	176	1073	44(4)
C(17)	4318(4)	2660(5)	3968(6)	29(4)	C(55)	1898	970	1230	34(4)
C(18)	4348(4)	2137(5)	3335(6)	28(3)	C(56)	481(3)	886(4)	1097(4)	58(5)
C(19)	4071(4)	1396(5)	3249(5)	25(3)	C(57)	- 173	928	823	65(5)
C(20)	3487(4)	1485(5)	5301(5)	26(3)	C(58)	- 489	1448	1206	69(6)
C(21)	3671(5)	2092(5)	6025(5)	44(4)	C(59)	-151	1926	1863	65(6)
C(22)	3801(4)	728(5)	5704(5)	39(4)	C(60)	503	1884	2138	47(5)
C(23)	2776(4)	1453(5)	5061(5)	35(4)	C(61)	819	1364	1755	36(4)
C(24)	4616(5)	3469(6)	4006(6)	37(4)	C(62)	1596(3)	2864(4)	1800(3)	57(5)
C(25)	4475(6)	3984(6)	4682(7)	77(6)	C(63)	1811	3626	1911	66(6)
C(26)	4376(5)	3874(6)	3159(7)	63(6)	C(64)	2362	3804	2543	52(5)
C(27)	5323(5)	3393(7)	4193(8)	77(6)	C(65)	2699	3219	3064	49(5)
C(28)	4230(4)	849(5)	2582(6)	30(4)	C(66)	2484	2456	2954	41(4)
C(29)	4766(5)	1195(6)	2259(6)	45(4)	C(67)	1932	2279	2322	36(4)
C(30)	4482(4)	71(5)	2965(5)	36(4)					

^a Äquivalente Isotrope U definiert als ein Drittel der Spur des orthogonalisierten U_{ii} Tensors.

TABELLE 4. Ausgewählte Bindungslängen (Å) und -winkel (°) von VIIb

Pt(1)-P(1)	2.374(2)	Pt(1)-P(2)	2.400(3)
Pt(1)-P(3)	2.276(3)	Pt(1)-P(4)	2.310(2)
Fe(1)-P(1)	2.368(3)	Fe(1)C(1)	2.116(7)
Fe(1)-C(2)	2.149(7)	Fe(1)-C(3)	2.159(6)
Fe(1)-C(4)	2.132(7)	Fe(1)-C(5)	2.105(6)
Fe(1)-C(12)	1.755(11)	Fe(1)-C(13)	1.756(11)
P(1)-P(2)	2.140(4)	P(2)-C(14)	1.881(8)
P(3)-C(37)	1.843(8)	P(3)-C(43)	1.810(7)
P(3)-C(49)	1.841(7)	P(4)-C(55)	1.833(8)
P(4)-C(61)	1.854(7)	P(4)-C(67)	1.832(8)
O(1)-C(12)	1.143(13)	O(2)-C(13)	1.146(13)
P(1)-Pt(1)-P(2)	53.3(1)	P(1)Pt(1)-P(3)	97.0(1)
P(2)-Pt(1)-P(3)	150.2(1)	P(1)-Pt(1)-P(4)	158.4(1)
P(2) - Pt(1) - P(4)	105.2(1)	P(3)-Pt(1)-P(4)	104.5(1)
Pt(1)-P(1)-Fe(1)	116.4(1)	P(1)-Fe(1)-C(12)	97.5(3)
Fe(1)-P(1)-P(2)	103.0(1)	P(1)-Fe(1)-C(13)	94.9(3)
Pt(1)-P(2)-C(14)	118.8(3)	C(12)-Fe(1)-C(13)	91.0(5)
Fe(1)-C(13)-O(2)	174.5(9)	Pt(1)-P(1)-P(2)	64.0(1)
		Pt(1) - P(2) - P(1)	62.7(1)
		P(1)-P(2)-C(14)	121.4(3)
		Fe(1)-C(12)-O(1)	174.5(9)

einem Siemens P2₁-Vierkreisdiffraktometer mit Mo K α -Strahlung ($\lambda = 0,71073$ Å) und Graphitmonochromator vermessen. Zelldimensionen: a = 22.230(4), b =17.265(4), c = 16.410(2) Å, $\alpha = \gamma = 90^{\circ}$, $\beta = 106.620(10)^{\circ}$, V = 6035(2) Å³, Raumgruppe $P2_1/c$, Z =4, D = 1.418 g cm⁻³, $\lambda = 2.725$ mm⁻¹, 2 θ : ω -scan Datensammlung von 10315 unabhängigen Intensitäten $(3.0 < 2\theta < 55.0^\circ)$, davon 7535 als beobachtet behandelt $(F_{\alpha} \ge 4\sigma(F))$. Die Strukturlösung nach direkten Methoden, die Strukturverfeinerung mit voller Matrix nach der Methode der kleinsten Fehlerquadrate und die Darstellung erfolgten mit dem Siemens SHELXTL PLUS-Programmsystem auf einem MicroVax-Rechner. Der Cyclopentadienyl-ring wurde als starrer Ring (C-C-Abstand 1.420 Å, C-C-C Winkel 108.0°) verfeinert, ebenso die Phenylringe an den Phosphanliganden (C-C-Abstand 1.395 Å, C-C-C-Winkel, 120.0°) und die CH₃-Gruppen (CH-Abstand 0.96 Å, H–C–H-Winkel 109.5°) mit festem isotropen Temperaturfaktor der Wasserstoffatome (0.08). R = 0.062, $R_w = 0.051$, w^{-1} $=\sigma^{2}(F)$. Maximale Restelektronendiche 1.09 e Å⁻¹. Die Atomkoordinaten und die Auslenkungsparameter sind in Tabelle 3, einige Bindungslängen und Winkel in Tabelle 4 aufgeführt. Abbildung 1 zeigt die Molekülstruktur von VIIb im Kristall.

Die Molekülstruktur von VIIb zeigt das Bild eines nahezu planaren Platin-Komplexes bei dem das Zentralatom an vier Phosphoratomen in verschiedenen Abständen koordiniert ist. Die Ebene PtP1P2 schließt mit der Ebene PtP3P4 einen Winkel von nur 3.4° ein. Für Komplex IX findet sich ein entsprechender Wert

Abb. 1. Struktur von VIIb im Kristall.

von 3° [19], während im η^2 -Diphosphenkomplex VIII sind beide Ebenen viel stärker gegeneinander verdreht (20.4°) [20]. Das Metallodiphosphen ist unsymmetrisch an das Pt gebunden, wobei die Bindung zum metallierten Donorzentrum P1 mit 2.374(2) Å deutlich kürzer ist als jene zum arylierten Phosphor P2(2.400(3) Å). In VIII betragen die entsprechenden Abstände 2.319(5) und 2.364(5) Å.

Das metallierte Diphosphen IVb nimmt auch als n^2 -Ligand die E-Konfiguration ein, jedoch sind die Atome FeP1P2 und C14 nicht länger coplanar orientiert, sondern bilden einen Torsionswinkel von -138.0° . Der Supermesitylsubstituent steht nahezu senkrecht auf der Ebene PtP1P2 (Diederwinkel 84.2°). Im Einklang mit anderen η^2 -Diphosphen-Komplexen (z.B. VIII, IX [19] und X [21]) liegt der Abstand P(1)-P(2)mit 2.140(4) Å zwischen dem einer P-P (ca. 2.22 Å) [22] und einer P=P-Bindung (ca. 2.02 Å) [23]. Der Fe-P1-Abstand (2.368(3) Å) rangiert am oberen Ende des weiten Bereiches für Fe-P-Bindungen von 2.12-2.39 Å in niedervalenten Carbonyleisenkomplexen [24]. Im Vergleich zu IVa wird in VIIb der Winkel Fe-P1-P2 von 109.8(1)° auf 103.0(1)° verkleinert, während der Winkel $P(1)-P(2)-C_{ipso}(Aryl)$ von 102.4(1)° auf 121.4(3)° in VIIb anwächst. Wesentlich kürzer als die Bindungen des Diphosphens zum Platin sind die Kontakte vom Zentralatom zu den Donorzentren der Phosphanliganden (Pt-P(3) = 2.276(3) bzw. Pt-P(4) = 2.310(2) Å). Hierbei fällt auf, daß der längere Abstand in der *trans*-Position zum kürzeren Platin-Diphosphen-Abstand Pt-P(1) liegt. Diese Beobachtung ist im Einklang mit den Kopplungskonstanten, die in gleichem Sinne variieren. In **VIII** werden Pt-P-Abstände zu den Phosphanliganden von 2.329(4) und 2.349(5) Å gemessen. Der Winkel P(3)-Pt-P(4) wird zu 104.5(1)° bestimmt. Die Bindungswinkel P(1)-Pt-P(3) (97.0(1)°) und P(2)-Pt-P(4) (105.2(1)°) differieren stark, wobei sterische Wechselwirkungen zwischen den PPh₃-Liganden und dem Supermesitylrest wahrscheinlich für die Winkelaufweitung verantwortlich sind.

3. Experimenteller Teil

Die Darstellung aller Verbindungen erfolgte unter N₂-Schutzgas in stickstoffgesättigten, absolut wasserfreien Lösungsmitteln. Folgende Verbindungen wurden nach Literaturvorschriften erhalten: $(\eta^5-C_5Me_5)$ - $(CO)_2Fe-P=P-Mes^*$ [4], $(\eta^5-C_5Me_4Et)(CO)_2Fe P=P-Mes^*$ [25], $(\eta^5-C_5Me_4^nBu)(CO)_2Fe-P=P-Mes^*$ [25], $(1,3^{-1}Bu_2C_5H_3)(CO)_2Fe-P=P-Mes^*$ [25], $(\eta^5 C_5Me_4Et)(CO)_2FeP(SiMe_3)_2$ [25], $(\eta^5-C_5Me_4^{-n}Bu) (CO)_2FeP(SiMe_3)_2$ [25], $(1,3^{-1}Bu_2C_5H_3)(CO)_2Fe-P(Si Me_3)_2$ [25], Mes^{*}PCl₂ [11], $(Z-C_8H_{14})Cr(CO)_5$ [12], $(Ph_3P)_2Pt(C_2H_4)$ [15]. IR-Spektren: Perkin Elmer 580.

3.1. ¹H-NMR-Spektren

Bruker AM 400 (400 14 MHz), Bruker AC 100 (100.13 MHz) (int. TMS-Standard); ¹³C-NMR-Spektren: Bruker AM 400 (100.61 MHz), Bruker AC 100 (25.18 MHz) (int. TMS-Standard), ³¹P-NMR-Spektren: Bruker AM 400 (162 MHz), Bruker AM 300 (121.7 MHz), Bruker AC 100 (40.54 MHz). (ext. 85% H_3PO_4 -Standard.) Analysen wurde im Mikroanalytischen Laboratorium Dornis und Kolbe, Mülheim/Ruhr durchgeführt.

3.2. Darstellung von $(\eta^5 - C_5 Me_4 Et)(CO)_2 FeP[Cr-(CO)_5] = P - Mes^*(Vb)$

Zu einer Lösung aus 0,60 g (1,37 mmol) (η^5 -C₅Me₄Et)(CO)₂FeP(SiMe₃)₂ (**IIIb**) in 15 ml THF werden bei -78°C 0,47 g (1,36 mmol) festes Mes*PCl₂ gegeben. Die Lösung wird auf 0°C erwärmt und 2 h bei dieser Temperatur und dann noch 5 min bei 20°C gerührt. Die ³¹P-NMR-Kontrolle der Reaktionslösung zeigt die erfolgte Bildung von (η^5 -C₅Me₄Et)(CO)₂Fe-P=P-Mes* (**IVb**) an. Vor der Zugabe von 0,41 g (1,36 mmol) (*Z*-*c*-C₈H₁₄)Cr(CO)₅ wird auf -20°C abgekühlt. Nach 20 min Rühren bei -20°C wird auf Raumtemperatur erwärmt, flüchtige Bestandteile im Vakuum entfernt und der braune Rückstand in 20 ml n-Pentan aufgenommen. Die Lösung wird dekantiert und der zurückbleibende Feststoff in 20 ml Diethylether gelöst. Nach dem Filtrieren wird das Filtrat auf 10 ml konzentriert und bei -30° C gelagert. Man erhält 0,40 g (38%) braunes, kristallines (Vb).

IR (KBr cm⁻¹): 2961m, 2867w; 2050s, 2005 s, 1980 sh, 1965s, 1931vs, 1911sh [ν (CO)], 1458w, 1383w, 1357w, 661m, 648m, 580m, 552w, 463w.

IR (n-Pentan, cm⁻¹): 2054s; 2011s, 1987s, 1983w, 1971s, 1946s, 1938s, 1924s.

UV/VIS (n-Pentan, nm): λ 235 (55000), 300 (19000), 340 (15000), 438 (8000).

¹H-NMR (THF- d_8): δ 1.12(t, ³J(HH) = 7,5 Hz, 3H, CH₂CH₃), 1.30 (s, 9H, *p*-^tBu), 1.58 (s, 18H, *o*-^tBu), 1.97 (s, 6H, 3,4-CH₃, Ring), 1.99 (s, 6H, 2,5-CH₃, Ring), 2.43 (q, ³J(HH) = 7.5 Hz, 2H, CH₂CH₃), 7.41 (s, 2H, *m*-H, Aryl).

¹³C-{¹H} NMR (THF- d_8): $\delta = 10.0$ (s, 3,4-CH₃, Ring), 10.2 (s, 2,5-CH₃, Ring), 13.9 (s, CH₂CH₃), 19.4 (s, CH₂CH₃), 31.4 (s, *p*-C(CH₃)₃), 34.0 (d, ⁴*J*(PC) = 5.6 Hz, *o*-C(CH₃)₃), 35.5 (s, *p*-C(CH₃)₃), 39.1 (s, *o*-C(CH₃)₃), 98.6 (s, 3,4-C, Ring), 99.8 (s, 2,5-C, Ring), 103.4 (s, 1-C, Ring), 123.0 (s, *m*- und *p*-C, Aryl), 151.4 (s, *o*-C, Aryl), 152.6 (d, ¹*J*(PC) = 6.9 Hz, *i*-C, Aryl), 214.9 (s, FeCO), 216.0 (d, ²*J*(PC) = 7.8 Hz, Cr(CO)-cis), 225.9 (s, Cr(CO)-trans).

$$\begin{split} \text{MS/EI:} \ m/e &= 760 \ (0,1\%, \ \text{M}^+), \ 714 \ (0,3\%, \ \text{M}^+ - \text{C}_2\text{H}_6\text{O}), \ 686 \ (2\%, \ \text{M}^+ - \text{C}_2\text{H}_6\text{O}, \ -\text{CO}), \ 658 \ (4\%, \ \text{M}^+ \ -\text{C}_2\text{H}_6\text{O}, \ -2\text{CO}), \ 626 \ (5\%, \ \text{M}^+ \ -\text{C}_2\text{H}_6\text{O}, \ -3\text{CO}), \ 520 \ (10\%, \ -\text{C}_2\text{H}_6\text{O}, \ -5\text{CO}, \ -\text{Cr}), \ 464 \ (12\%, \ \text{M}^+ \ -\text{C}_2\text{H}_6\text{O}, \ -7\text{CO}, \ -\text{Cr}). \end{split}$$

Gef.: C, 56.92; H, 6.13; Fe, 7.31. $C_{36}H_{46}CrFeO_7P_2$ (760.6) ber.: C, 56.85; H, 6.10; Fe, 7.34%.

3.3. Darstellung von $(\eta^5 - C_5 Me_4^n Bu)(CO)_2 FeP[Cr-(CO)_5] = PMes^* (Vc)$

Die Lösung von 0,86 g (1,84 mmol) (η^5 -C₅Me₄ⁿBu)(CO)₂FeP(SiMe₃)₂ (**IIIc**) in 15 ml THF wird bei -78°C mit 0,64 g (1,85 mmol) Mes^{*}PCl₂ versetzt und bei -20°C 2 h gerührt. Es wird auf Raumtemperatur erwärmt, 5 min gerührt und erneut auf -20°C abgekühlt, bevor 0,56 g (1,86 mmol) (Z-c-C₈H₁₄)Cr(CO)₅ hinzugegeben werden. Das Reaktionsgemisch wird 20 min auf -20°C gehalten, dann auf 20 °C erwärmt und im Vakuum zur Trockne eingeengt. Der Rückstand wird in 20 ml n-Pentan aufgenommen, filtriert und das Filtrat auf 10 ml eingeengt. Bei -30 °C kristallisiert Vc innerhalb von 12 h in Form dünner roter Blättchen aus Ausbeute: 0,60 g (41%).

IR (KBr, cm⁻¹): 2956m, 2867w, 2050s, 2004s, 1980 sh, 1965s, 1931vs, 1912 sh [ν (CO)], 1476w, 1459w, 1380w, 1234w, 1208w, 1122w, 1024w, 873w, 662m, 647m, 616w, 580m, 554w, 509w, 462w. IR (Pentan, cm^{-1}): 2054s, 2011s, 1987m, 1983w, 1971s, 1946s, 1937s, 1924s [ν (CO)].

UV/VIS (Pentan, nm): λ 228 (53000), 297 (18000), 340 (14000), 438 (7000).

¹H-NMR (THF- d_8): δ 0.96 (s, br, 3H, CH₂CH₂CH₂CH₂ CH₃), 1.31 (s, 9H, *p*-^tBu), 1.45 (s, br, 4H, CH₂CH₂CH₂CH₃), 1.59 (s, 18H, *o*-^tBu), 1.97 (s, 6H, 3,4-CH₃, Ring), 1.99 (s, 6H, 2,5-CH₃, Ring), 2.40 (s, br, 2H, CH₂CH₂CH₂CH₂CH₃), 7.41 (s, 2H, *m*-H, Aryl).

¹³C{¹H} NMR (THF- d_8): δ 10.2 (s, CH₃, Ring), 14.1 (s, CH₂CH₂CH₃CH₃), 23.6 (s, CH₂CH₂CH₂CH₂CH₃), 26.1 (s, CH₂CH₂CH₂CH₃), 31.4 (s, *p*-C(CH₃)₃, 32.7 (s, CH₂CH₂CH₂CH₂CH₃), 33.7 (s, *o*-C(CH₃)₃, 35.5 (s, *p*-C(CH₃)₃), 39.1 (s, *o*-C(CH₃)₃), 98.7 (s, 3,4-C, Ring), 99.5 (s, 2,5-C, Ring), 102.9 (s, 1-C, Ring), 123.0, (s, *m*-und *p*-C, Aryl), 151.4 (s, *o*-C, Aryl), 152.6 (s, *i*-C, Aryl), 214.9 (s, FeCO), 216 (s, Cr(CO)-*cis*), 225.9 (s, Cr(CO)-*trans*).

MS/EI: m/e = 788 (2%, M⁺), 731 (2%, M⁺-C₄H₉), 704 (12%, M⁺ - C₄H₉ - CO), 676 (1%, M⁺ -C₄H₉ - 2CO), 648 (5%, M⁺ - C₄H₉, -3CO), 620 (12%, M⁺ - C₄H₉ - 4CO), 592 (96%, M⁺ - C₄H₉ -5CO), 540 (16%, M⁺ - C₄H₉, -5CO, -Cr), 512 (15%, M⁺ - C₄H₉, -6CO, -Cr), 483 (60%, M⁺ -C₄H₉, -7CO, -Cr), 428 (16%, M⁺ - C₄H₉, -7CO, -Cr, -Fe).

Gef.: C, 57.78; H, 6.31; Fe, 6.98. $C_{28}H_{50}CrFeO_7P_2$ (788.6) ber.: C, 57.88; H, 6.39; Fe, 7.08%.

3.4. Darstellung von $(\eta^5 - C_5 H_3^{\dagger} Bu_2)(CO)_2 FeP[Cr (CO)_5] = PMes^*(Vd)$

Wie vorstehend beschrieben werden 15 ml einer THF-Lösung von $(\eta^5-C_5H_3^{\dagger}Bu_2)(CO)_2FeP = P-Mes^*$ (IVd) aus 0,72 g (1,50 mmol) $(\eta^5-C_5H_3^{\dagger}Bu_2)(CO)_2$ -FeP(SiMe₃)₂ (IIId) und 0,53 g (1,50 mmol) festen Mes*PCl₂ hergestellt. Bei -20°C erfolgt die Zugabe von (Z-C₈H₁₄)Cr(CO)₅. Nach Erwärmen auf 20°C wird zur Trockene eingeengt, der Rückstand in 20 ml n-Pentan aufgenommen und die überstehende Lösung dekantiert. Der feste Rückstand wird in 20 ml Ether gelöst, filtriert und das Filtrat auf 10 ml konzentriert. Bei -30°C kristallisieren 0,44 g (37%) tiefrotes Vd aus.

IR (KBr, cm⁻¹): 2961m, 2904w, 2867w, 2052s, 2010s, 1980sh, 1967s, 1934vs, 1911sh, 1625w, 1586w, 1462w, 1390w, 1358w, 1250w, 1121w, 872w, 660m, 648m, 613w, 577 w, 460w.

IR (Pentan, cm⁻¹): 2054m, 2036w, 2016s, 1996w, 1989w, 1976m, 1947s, 1939s, 1921m [ν (CO)].

UV/VIS (Pentan, nm): λ 238 (44000), 288 (15000), 332 (9000), 442 (4000).

¹H-NMR (THF- d_8): δ 1.34 (s, 9H, p-^tBu), 1.36 (s, 18H, ^tBu, Ring), 1.55 (s, 18H, o-^tBu), 5.27 (s, 1H, 2-H, Ring), 5.34 (s, 2H, 4,5-H, Ring), 7.43 (s, 2H, *m*-H, Aryl).

¹³C{¹H} NMR (THF- d_8): δ 31.4 (s, *p*-C(CH₃)₃), 31.5 (s, C₅C(CH₃)₃), 32.0 (s, C₅C(CH₃)₃), 33.9 (s, br, *o*-C(CH₃)₃), 35.6 (s, *p*-C(CH₃)₃), 39.1 (s, *o*-C(CH₃)₃), 80.8 (s, 4,5-C, Ring), 85.8 (s, 2-C, Ring), 119.2 (s, *p*-C, Aryl), 119.9 (s, 1,3-C, Ring), 123.2 (s, *m*-C, Aryl), 151.1 (s, *o*-C, Aryl), 152.2 (s, br, *i*-C, Aryl), 214.4 (s, FeCO), 216.2 (s, Cr(CO)-*cis*), 225.7 (s, Cr(CO)-*trans*).

MS(EI): m/e = 788 (10%, M⁺), 731 (8%, M⁺ -C₄H₉), 704 (14%, M⁺ -C₄H₉ - CO), 676 (6%, M⁺ -C₄H₉ - 2CO), 648 (3%, M⁺ -C₄H₉ - 3CO), 620 (44%, M⁺ -C₄H₉ - 4CO), 592 (98%, M⁺ - C₄H₉ -5CO), 540 (70%, M⁺ -C₄H₉ - 5CO - Cr), 512 (60%, M⁺ -C₄H₉ - 6CO - Cr), 483 (100%, M⁺ -C₄H₉ -7CO - Cr).

Gef.: C, 57.96; H, 6.32; Fe, 7.16. $C_{38}H_{50}CrFeO_7P_2$ (788.6) ber.: C, 57.88; H, 6.39; Fe, 7.08%.

3.5. Darstellung von $Pt[\eta^2 - {(\eta^5 - C_5 Me_5)(CO)_2 Fe - P = P - Mes^*}](Ph_3P)_2$ (VIIa)

Die Lösung von 1,00 g (1,81 mmol) IVa in 20 ml THF wird bei 20°C mit 1,47 g (1,80 mmol) $(Ph_3P)_2Pt(C_2H_4)$ versetzt und 18 h gerührt. Alle flüchtigen Bestandteile werden im Vakuum entfernt, der feste Rückstand wird in Ether aufgenommen und filtriert. Das Filtrat wird auf *ca*. 10 ml eingeengt und bei -30°C gelagert, wobei 1,50 g (65%) VIIa als schwarz-violetter mikrokristalliner Feststoff ausfallen.

IR (KBr, cm⁻¹): 3049w, 2957m, 2903m, 2866 sh; 2012m, 1966s, 1919s [ν (CO)]; 1584w, 1475m, 1431s, 1384w, 1356w, 1307w, 1180w, 1154w, 1115w, 1090m, 1068w, 1024w, 995w, 740m, 692s, 577m, 531sh, 514s.

IR (Pentan, cm⁻¹): 1970vs, 1963sh, 1924vs [ν (CO)]. ¹H-NMR(C₆D₆): δ 1.44 (s, 9H, p⁻¹Bu), 1.47 (s, 15H,

 C_5Me_5), 1.87 (s, 18H, o-^tBu), 6.90 (m, 6H, p-H, Phenyl), 6.95 (m, 12H, m-H, Phenyl), 7.45 (m, 6H, o-H, Phenyl), 7.49 (s, 2H, m-H, Aryl), 7.65 (m, 6H, o-H, Phenyl).

¹³C{¹H} NMR (THF- d_8): δ 9.8 (d, ³J(PC) = 7 Hz, C₅(CH₅)₅), 31.8 (s, *p*-C(CH₃)₃), 35.1 (d, ⁴J(PC) = 9 Hz, *o*-C(CH₃)₃, 35.2 (s, *p*-C(CH₃)₃), 39.5 (d, ³J(PC) = 3 Hz, *o*-C(CH₃)₃), 96.5 (s, C₅(CH₃)₅), 122.0 (s, *m*- und *p*-C, Aryl), 127.7 (d, ³J(PC) = 10 Hz, *m*-C, Phenyl), 128.1 (d, ³J(PC) = 10 Hz, *m*-C, Phenyl), 129.4 (s, *p*-C, Phenyl), 129.7 (s, *p*-C, Phenyl), 135.1 (d, ²J(PC) = 12 Hz, *o*-C, Phenyl), 135.7 (s, br, *o*-C, Phenyl), 136.7 (d, ¹J(PC) = 4 Hz, *i*-C, Phenyl), 137.1 (d, ¹J(PC) = 3 Hz, *i*-C, Phenyl), 146.3 (s, *o*-C, Aryl), 157.0 (m, *i*-C, Aryl), 218.9 (m, FeCO), 220.2 (m, FeCO).

Gef.: C, 62.12; H, 5.93; Fe, 4.46. $C_{66}H_{74}FeO_2P_4Pt$ (1274.1) ber.: C, 62.22; H, 5.85; Fe, 4.38%.

3.6. Darstellung von $Pt[\eta^2 - {\eta^5 - C_5 Me_4 Et})(CO)_2 Fe - P = P - Mes^*](Ph_3P)_2$ (VIIb)

Analog wie vorstehend werden aus 1,12 g (1,90 mmol) **IVb** und 1,50 g (2,00 mmol) (Ph₃P)₂Pt(C₂H₄) in

20 ml THF 1,80 g (73%) schwarz-violettes VIIb erhalten. Der Komplex wurde aus einen Pentan/ Ethergemisch (2:1) bei -30° C kristallisiert.

IR (KBr, cm⁻¹): 3050w, 2958s, 2902sh, 2867w; 2013m, 1966s, 1920s [ν (CO)]; 1584w, 1476m, 1456w, 1432s, 1386w, 1358w, 1308w, 1233w, 1179w, 1153w, 1115w, 1091m, 1067w, 1024w, 994w, 871w, 739m, 719w, 692s, 577m, 540m, 515s.

IR (Pentan, cm⁻¹): 1974vs, 1928vs [ν (CO)].

¹H-NMR (C_6D_6): δ 0.83 (t, 3H, CH_2CH_3), 1.44 (s, 9H, *p*-^tBu), 1.45 (s, 3H, CH_3 , Ring), 1.47 (s, 3H, CH_3 , Ring), 1.51 (s, 3H, CH_3 , Ring), 1.53 (s, 3H, CH_3 , Ring), 1.86 (s, 18H, *o*-^tBu), 2.07 (m, 2H, CH_2CH_3), 6.94 (m, 18H, *p*- und *m*-H, Phenyl), 7.48 (s, 2H, *m*-H, Aryl), 7.52 (m, 12H, *o*-H, Phenyl).

¹³C{¹H} NMR (THF- d_8): δ 9.6 (s, 3,4-CH₃, Ring), 9.7 (s, 2,5-CH₃, Ring), 14.5 (s, CH₂CH₃), 19.0 (d, ³J(PC) = 4 Hz, CH₂CH₃), 31.8 (s, *p*-C(CH₃)₃), 35.1 (m, *o*-C(CH₃)₃), 39.4 (d, ³J(PC) = 3 Hz, *o*-C(CH₃)₃), 95.8 s und 96.0 s (3,4-C, Ring), 97.3 s und 97.4 s (2,5-C, Ring), 100.8 s, 1-C, Ring), 122.0 (s, *m*- und *p*-C, Aryl), 127.7 (d, ³J(PC) = 10 Hz) und 128.1 (d, ³J(PC) = 10 Hz, *m*-C, Phenyl), 129.4 s und 129.7 s (*p*-C, Phenyl), 135.1 (d, ²J(PC) = 12 Hz) und 135.7 (s, br, *o*-C, Phenyl), 136.6 (d, ¹J(PC) = 3 Hz) und 137.1 (d, ¹J(PC) = 3 Hz, *i*-C, Phenyl), 146.3 (s, *o*-C, Aryl), 157.0 (m, *i*-C, Aryl), 218.8 (m, FeCO), 220.2 (m, FeCO).

Gef.: C, 62.95; H, 6.10; Fe, 4.09; C₆₇H₇₆FeO₂P₂Pt (1288.2) ber.: C, 62.47; H, 5.95; Fe, 4.34%.

3.7. Darstellung von $Pt[\eta^2\{(\eta^5-C_5Me_4^nBu)(CO)_2Fe-P = P-Mes^*\}](Ph_3P)_2$ (VIIc)

Wie vorstehend werden aus 0,91 g (1,50 mmol) IVc und 1,24 g (1,65 mmol) ($Ph_3P_2Pt(C_2H_4)$ in 20 ml THF 1,45 g (67%) schwarz-violettes VIIc erhalten. Der Komplex wurde aus Pentan/Ether (3:1) bei -30° C kristallisiert.

IR (KBr, cm⁻¹): 3051m, 2955s, 2928sh, 2901sh, 2865m, 2013m, 1966vs, 1919vs [ν (CO)], 1585w, 1476m, 1459w, 1431s, 1383w, 1357w, 1233w, 1179w, 1153w, 1116w, 1092m, 1068w, 1025w, 996w, 871w, 740s, 718w, 692s, 632w, 578m, 532m, 515s, 451w.

IR (Pentan, cm⁻¹): 1974s, 1927vs.

¹H-NMR (C_6D_6): $\delta = 0.83$ (m, 3H, (CH_2)₃CH₃), 1.24 (m, 4H, $CH_2(CH_2)_2CH_3$), 1.44 (s, 9H, *p*-^tBu), 1.48 (s, br, 6H, CH₃, Ring), 1.54 (s, 3H) und 1.56 (s, 3H, CH₃, Ring), 1.87 (s, 18H, *o*-^tBu), 2.07 (m, 2H, $CH_2(CH_2)_2CH_3$), 6.91 (m, 18H, *m*- und *p*-H, Phenyl), 7.48 (s, 2H, *m*-H, Aryl), 7.50 (m, 12H, *o*-H, Phenyl).

¹³C{¹H} NMR (THF- d_8): δ 9.8 (m, CH₃, Ring), 14.3 (s, (CH₂)₂CH₃), 23.5 (s, CH₂(CH₂)₂CH₃), 31.8 (s, *p*-C(CH₃)₃, 33.1 (s, CH₂(CH₂)₂CH₃), 35.0 (s, *p*-C(CH₃)₃), 35.1 (*m*, *o*-C(CH₃)₃), 39.5 (d, ³J(PC) = 3 Hz, *o*-C(CH₃)₃), 96.0 und 96.3 (s, 3,4-C, Ring), 97.0 s und 97.7 (s, 2,5-C, Ring), 99.6 (s, 1-C, Ring), 122.0 (s, *m*- und *p*-C, Aryl), 127.7 (d, ³*J*(PC) = 10 Hz) und 128.1 (d, ³*J*(PC) = 10 Hz, *m*-C, Phenyl), 129.4 s und 129.7 (s, *p*-C, Phenyl), 135.1 (d, ²*J*(PC) = 12 Hz) und 135.8 (*m*, *o*-C, Phenyl), 136.7 (d, ¹*J*(PC) = 3 Hz) und 137.1 (d, ¹*J*(PC) = 3 Hz, *i*-C, Phenyl), 146.2 (s, *o*-C, Aryl), 156.9 (m, *i*-C, Aryl), 218.9 m und 220.1 (m, FeCO).

Gef.: C, 62.89; H, 6.08; Fe, 4.10. $C_{69}H_{80}FeO_2P_4Pt$ (1316.2) ber.: C, 62.97; H, 6.13; Fe, 4.24%.

3.8. Darstellung von $Pt[\eta^2 - \{\eta^5 - C_5H_3^tBu\}(CO)_2Fe - P = P - Mes^*](Ph_3P)_2$ (VIId)

Wie vorstehend wird aus 0,75 g (1,25 mmol) IVd und 1,02 g (1,25 mmol) (Ph₃P)₂Pt(C_2H_4) in 20 mol THF 1,0 g (61%) schwarz-grünes mikrokristallines VIId gewonnen.

IR (KBr, cm⁻¹): 3051m, 2956s, 2900m, 2864m, 2015m, 1972s, 1926s [ν (CO)], 1764w, 1583w, 1476m, 1460w, 1430s, 1386w, 1357w, 1250w, 1179w, 1113w, 1091s, 1023w, 995w, 871w, 801w, 740m, 717w, 693s, 620w, 575m, 513s.

IR (Pentan, cm⁻¹): 1978vs, 1933vs [ν (CO)].

¹H-NMR (C_6D_6): δ 1.14 (s, 9H) und 1.26 (s, 9H, ¹Bu, Ring), 1.43 (s, 9H, *p*-^tBu), 1.90 (s, 18H, *o*-^tBu), 3.85 (m, 1H) und 4.17 (m, 1H, 4,5-H, Ring), 4.45 (m, 1H, 2-H, Ring), 6.87 (m, 6H, *p*-H, Phenyl), 6.94 (m, 12H, *m*-H, Phenyl), 7.38 (m, 6H, *o*-H, Phenyl), 7.51 (s, 2H, *m*-H, Aryl), 7.63 (m, 6H, *o*-H, Phenyl).

¹³C{¹H} NMR (THF- d_8): δ 31.3 (s, *p*-C(CH₃)₃), 31.7 s und 31.9 (s, C₅C(CH₃)₃), 32.1 (s, C₅C(CH₃)₃), 35.1 (s, *p*-C(CH₃)₃), 35.3 (m, *o*-C(CH₃)₃), 39.5 (s, *o*-C(CH₃)₃), 79.0 s und 80.3 (s, 4,5-C, Ring), 91.8 (d, ²J(PC) = 9 Hz, 2-C, Ring), 113.0 s und 115.3 (s, 1,3-C, Ring), 119.9 (s, *p*-C, Aryl), 121.9 (s, *m*-C, Aryl), 128.2 (m, *m*-C, Phenyl), 135.3 s und 136.7 (s, *i*-C, Phenyl), 146.5 (s, *o*-C, Aryl), 156.7 (m, *i*-C, Aryl), 217.7 s und 220.6 (s, FeCO). Von **VIId** konnten keine brachbaren Elementaranalysen erhalten werden.

Dank

Diese Arbeit wurde in dankenswerter Weise von der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie und der BASF AG (Ludwigshafen) unterstützt.

Literatur

- 1 XXIX. Mitteilung: L. Weber, S. Buchwald, D. Preugschat, H. G. Stammler und B. Neumann, *Organometallics*, 11 (1992) 2351.
- 2 A.-M. Caminade, J.-P. Majoral und R. Mathieu, Chem. Rev., 91 (1991) 575.
- 3 L. Weber, Chem. Rev., im Druck.
- 4 L. Weber, K. Reizig, D. Bungardt und R. Boese, Organometallics, 6 (1987) 110.

- 5 L. Weber und G. Meine, Z. Naturforsch., Teil B, 42 (1987) 774.
- 6 L. Weber, K. Reizig, D. Bungardt und R. Boese, Chem. Ber., 120 (1987) 1421.
- 7 L. Weber, G. Meine, R. Boese und D. Bläser, Chem. Ber., 121 (1988) 853.
- 8 L. Weber, H. Schumann und R. Boese, Chem. Ber., 123 (1990) 1779.
- 9 L. Weber und H. Schumann, Chem. Ber., 124 (1991) 265.
- 10 L. Weber, R. Kirchhoff, R. Boese und H. G. Stammler, J. Chem. Soc., Chem. Commun., (1991) 1293.
- 11 K. Issleib, H. Schmidt und C. Werner, Z. Anorg. Allg. Chem., 488 (1982) 75.
- 12 F.-W. Grevels und V. Skibbe, J. Chem. Soc., Chem. Commun., (1984) 681.
- 13 H. Lang, O. Orama und G. Huttner, J. Organomet. Chem., 291 (1985) 293.
- 14 M. Yoshifuji, T. Hashida, K. Inamoto und K. Shibayama, Chem. Lett., (1985) 287.
- 15 U. Nagel, Chem. Ber., 115 (1982) 1998.

- 16 P. S. Pregosin und R. W. Kunz, ³¹P- und ¹³C-NMR of Transition Metal Phosphine Complexes, Springer, Berlin, 1979.
- 17 U. Meyer, Dissertation, Univ. Bielefeld, 1988.
- 18 H. Schäfer und D. Binder, Z. Anorg. Allg. Chem., 560 (1988) 65.
- 19 J. Chatt, P. B. Hitchcock, A. Pidcock, C. P. Warrens und K. R. Dixon, J. Chem. Soc., Dalton Trans (1984) 2237.
- 20 P. S. Elmes, M. L. Scudder und B. O. West, J. Organomet. Chem., 122 (1976) 281.
- 21 J. Borm, C. Zsolnai und G. Huttner, Angew. Chem., 95 (1983) 1018; Angew. Chem., Int. Ed. Engl., 22 (1983) 977; Angew. Chem., Suppl. (1983) 1477.
- 22 (a) J. C. J. Bart, Acta Crystallogr., Sect. B, 25 (1969) 762; (b)
 H. G. von Schnering und W. Hönle, Chem. Rev., 88 (1988) 243.
- 23 Übersicht: A. H. Cowley und N. Norman, Prog. Inorg. Chem., 34 (1986) 1.
- 24 L. Weber, H. Bastian, A. Müller und H. Bögge, Z. Naturforsch., Teil B, 47 (1992) 231 und hierin zitierte Literatur.
- 25 L. Weber, I. Schumann, H.-G. Stammler und B. Neumann, Z. Naturforsch., Teil B, 47 (1992) 1134.